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Abstract—We present the first systematic experimental and them an excellent choice for low-noise amplifiers, oscillators
modeling results of noise corner frequency fc) and noise corner  [3], and power amplifiers.
frequency to cutoff frequency ratio (fc/fr) for SiGe hetero- e traditional figure-of-merit for low-frequency noise, the

junction bipolar transistors (HBTs) in a commercial SiGe RF . f s f | . |
technology. Thefc and fc / fr ratio are investigated as a function 01S€ COrMer requendfc), accounts for onlyi/f noise. In

of operating collector current density, SiGe profile, breakdown ~Circuit design, however, the speed of the transistors is also a
voltage, and transistor geometry. We demonstrate that both the critical design issue. Si BJTs typically have Igw, but do not
fc and fc/ fr ratio can be significantly reduced by careful SiGe have sufficient gain to sustain oscillation at RF and microwave
profile optimization. A comparison of the fc and fc/fr ratio  gequencies because of their limitgd. GaAs HBTs have high
for high breakdown and standard breakdown voltage devices is but tvpically h hi dh tel h
made. Geometrical scaling data show that the SiGe HBT with fT_’ uttypically ave '_gbcc an ' ence, generate argerp_ ase
Ap = 0.5 x 2.5 um? has the lowestfc and fo/fr ratio noise when used in oscillators. SiGe HBTs, however, profjde
compared to other device geometries. Arfc reduction of nearly — comparable to GaAs HBTs and lowgs than Si BJTs, making
50% can be achieved by choosing this device as the unit cell in RF them an attractive choice for ultra-low phase-noise oscillators
integrated-circuit design. [3]. A better figure-of-merit to characterize low-frequency noise
Index Terms—Breakdown voltage, corner frequency, cutoff for these applications is th&-/ fr ratio [4], originally defined

frequency, device modeling, flicker noise, heterojunction bipolar in [5], because it takes into account high-frequency response
transistor (HBT), low-frequency noise, phase noise, RF integrated through fr.

cireuit (RFIC), SiGe. This paper presents modeling and experimental results of the

low-frequency noise figures-of-merf and fc/ fr in a com-
|. INTRODUCTION mercial SiGe RF technology. Low-frequency noise spectra and
a@igh-frequencys-parameters were measured, from whigh
r])dfT are extracted. Four SiGe HBT wafers featuring different

both wired and wireless telecommunications applications b '—G? profile designs were used to €xamine the |mp§ct of SiGe
file shape onfc and f¢/fr . The profile comparison re-

cause of its superior analog and RF performance, together : . . .

its CMOS integration capability [1]. By employing bandgap ert ts are then used to.derlve a new figure-of-merit for S@e

gineering, SiGe HBTs outperform Si bipolar junction transi rofile design. Many W|reless_systems o_per_ate at frequencies

tors (BJTs) in nearly every important performance metric an elow 50 GHz, the peakr ach|eve_d in this SiGe technology.

in several areas, provide improved performance over the Ill— € excesg‘T.can be traded for higher break(_jpwn voltage t_o

HBTs. One of the areas in which SiGe HBTs exceed GaA low larger signal power, which reduces.addltlve_ phase noise

HBTsis in low1/f noise corner frequency [2], thereby making%n vgltage—controlled osqillat(.)rs [6]. W_e will examine .hOW the
abrication process modifications required for increasing break-
down voltage affects low-frequency noise, which then deter-
mines modulative phase noise in oscillators.
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Fig. 1. Schematic cross section of the SiGe HBTs used in this study.
II. DEVICE TECHNOLOGY stantK r in SPICE. The noise corner frequenfy is obtained
Fig. 1 shows a schematic cross section of the SiGe HBT uddjequating the/ f noiseS;;, to the shot noiséqls as follows:
in this study. The SiGe HBT has a planar self-aligned struc- Klg Ko
ture with a conventional polyemitter contact, silicided extrinsic fe = 2As ~ 200 (2)

base, and deep- and shallow-trench isolation. The SiGe base

was grown using the ultrahigh vacuum/chemical vapor depeherea = 2 is assumed for simplicity and insight, as detailed

sition (UHV/CVD) technique. Devices of two different break-below,.J¢ is the collector current density, agds the dc current

down voltages were obtained on the same chip in the same fgbin.

rication flow by selective implantation during collector forma- Equation (2) suggests thgt is proportional toJ- and K,

tion. The standard breakdown voltage (SBV) devices receivadd inversely proportional t@. This differs from that derived

both a deep and a shallow collector implant, and have a paaK5]. The derivation of [5] showed thafc is independent of

fr of 50 GHz BV ceo = 3.3 V). The high breakdown voltage biasing current density because= 1 was assumed according

(HBV) devices received only the deep collector implant, arié mobility fluctuation. This, however, is not the case in our

have a peakfr of 30 GHz BVceo = 5.3 V). Details of the devices, which all show an close to two.

fabrication process can be found in [8]. The figure-of-merit for frequency response, cutoff frequency
Four wafers with different SiGe profile designs were megir, is related taJc by

sured, including a 10% peak SiGe control, a 14% peak low-noise

design (LN1), a 18% peak low-noise desigh{/2), and an Si ~ TR+ LCt = 7P+ &Ct (3)

BJT comparison. Details of the SiGe profile design can be found 2 fr 9m Jo

in [9] and [10]. All of the wafers were fabricated in the SaAME herery is the forward transit timey; = kT /q is the thermal
wafer lot under identical processing conditions. The SiGefiIn“%'tageg — Je/V, is the transconductance per unit area, and
in all of the SiGe designs are unconditionally stable to defegt i the total junction depletion capacitance per unit area. Prior

generation. Compared to the SiGe control, th€1 and LN 2 to f1 rolloff at high J¢., - andC; are constant in the typical-

designs have a higher Ge content and a larger Ge gradient i”r%"?ge of interest to RF circuits (0.1-1.5 ). The fc / fr
neutral base to achieve highgand higherfr, but less Ge ret- | .-i< obtained by combining (2) and (3) as follows:
rograding into the collector to keep the total Ge content within

the thermal stability limit. f C
C m Jo t K
K-+ Vi | = —(trJc + ViCL). ()
P F t (trJc 2Ct)

fr B Jc Bq

I1l. L ow-FREQUENCY NOISE FIGURES-OFMERIT

It has been experimentally established that the majgr  Thus, the model suggestdinear increase of thefc/ fr ratio
noise source in these SiGe HBTS is the base cuiirgfinoise With operating collector current densify: provided thaty and
[2], [3]. The 1/f noise is proportional td% and inversely pro- Tr aré constant. This is in contrast to the prediction ofa

portional to the emitter ared as follows: independenyc / fr ratio in [5], which assumed = 1 (a ~ 2
in our devices). At highetc, where fr is larger,7rJc >

K 1 ViCy and feo/fr = KwrpJc/Bq. Thus, thefe/ fr ratio is

Sip = A_EIB? (1) determined by the{rr /[ term at higherJc. A smallerrr,

higher 3, and smallerK factor are desired to redugk:/ fr.
where K is a technology dependent constant, ands 2 for A smaller f-/ fr indicates better phase noise performance at
typical SiGe HBTsK /A g corresponds to the flicker noise con-higher frequencies.
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Fig. 2. Typical low-frequency noise spectrum of SiGe HBT used in this studyig- 3. Measured corner frequengy and cutoff frequency’r as a function

(Ap = 0.5 x 2.5 um?, Iz = 1 pA).

of J¢ for the SBV SiGe control HBTAz = 0.5 x 2.5 um?).

IV. EXPERIMENTAL RESULTS 12 vl ! ]

Low-frequency noise spectra andparameters were mea- . 10 |
sured on both SBV and HBV devices for the SiGe control, the T 0.8 B SiGe Control 7]
LN1 and LN2 low-noise SiGe designs, and the Si BJT com- X o6 Ac0S2Hm -
parison. Low-frequency noise was measured using an EG&G *\;': 04 L _
5113 preamplifier and an HP3561A dynamic signal analyzer - — Model
controlled by a Labview progran$-parameters were measured 0.2y 4 Measurement
from 0.5 to 40 GHz using an HP8510C vector network ana- o——r~b 3 11
lyzer, from which fr was extracted. The forward transit time 0 o2 °"}Jc (n:’)_\e/“ng"s 10 1.2

7r and the depletion capacitance per unit atgavere deter-
mined from the intercept and slope of the linear extrapolatiefy. 4. Measured and modelgid / .- ratio as a function of . for the SBV
of the measuretl/ f7 — 1/ .J¢ data, respectively. In the low-fre- SiGe control HBT 5 = 0.5 x 2.5 um?).
quency noise measurements, devices were biased at collector
current densities from 0.1 to 1.5 myh?, the range of interest J¢, as predicted by (4). These results suggest that in order to
to RF circuits for the SBV devices. reduce thefc and fc/ fr ratio, the smallest- that provides

Fig. 2 shows a typical low-frequency base current noise speslequatef should be used.
trum (S, ) for an SBV SiGe control HBT. The noise spectrum
shows a cleat/ f component and thi&; I ; shot noise level. The B. High Breakdown Versus Low Breakdown
corner frequencyc is determined from the intersection of the One of the most favorable properties of SiGe HBTSs is the
1/ f component and thigy Iz shot noise level. The rolloff above low 1/f corner frequencyfc, which makes them excellent
10 kHz is due to the bandwidth limitation of the preamplifiethoices for power amplifiers and oscillators [1]. In VCOs
used. The measuresy, x f product was plotted as a functionoperating below the peak cutoff frequency of the HBV device
of I3, from which the SPICH/ f noise constank'» was ex- (30 GHz), the HBV device is a better choice than the high
tracted by assuming = 2. The obtaineds - is approximately device. The HBV device has the natural advantage of operating
proportional tol /A g, leading to an emitter area independ&nt with a larger signal power, thus reducing additive phase noise
factor of 2.0x 1072 um?. The measured factor is approxi- according to Leeson’s theory [11].
mately the same for all of the SiGe designs. A logical question is how the use of the HBV device affects
the modulative phase noise up-converted from low-frequency
noise. Fig. 5 compares th&;, x f product as a function of

The measured and calculatgd versusJc are shown on the Iy for SBV and HBV devices on the SiGe control wafer. At
left y-axis of Fig. 3 for an SBV HBT on the SiGe control waferthe samd g, the SBV and HBV devices show nearly the same
The measured versusJ- dependence is shown on the rightS;,, x f product. Due to their simila#, the two devices show
y-axis. The cutoff frequency, increases with/- according nearly identicalfc at the same/, as shown in Fig. 6. Fig. 7
to (3) prior to thefr rolloff at high injection. The corner fre- shows the measured and modelgd/ fr ratio versusJc, to-
quencyfc¢ increases with/¢, as predicted by (2). The commongether with measuredir for both devices. At lowet¢, fr is
practice of quoting corner frequency value without specifyingery close in the SBV and HBV devices. Al increasesfr in
biasing current and device geometry can be misleading becatleeHBY devices decreases because of the enhanced Kirk effect
fc strongly depends on biasing current density, as shown tye to the low collector doping. Thig; difference translates
the data in Fig. 3. The calculatgd: is in close agreement with into an f-/ fr difference. Thefc/ fr ratio is very close in the
measured data. The slight deviation from a linear increaseSBYV and HBV devices before thgr rolloff at high injection.
caused by thd- dependence gf and the deviation of from The f-/ fr ratio becomes higher in the HBV device after the
two. Fig. 4 shows the measurgd/ fr ratio, together with mod- fr rolloff.
eling results calculated using (4). The modeling results agreeThe similar low-injectionl/ f noise behavior in the SBV and
well with the measured data. Thie:/ fr ratio increases with HBV devices indicates that the f noise sources created by the

A. Collector Operating Current Dependence
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Fig. 9. Measured- as a function of/- for the SBV Si BJT, SiGe control,

Fig. 6. Measured and modelgd as a function of/c for the SBV and HBV 0 - 00 0 MR TS,

SiGe control HBTSs.
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Fig. 7. Measured and modelgd / f ratio (left-hand side) and measurgd  Si BJT, SiGe control, and two low-noise HBTS.
(right-hand side) for the SBV and HBV SiGe control HBTs.

The measuredc data shown in Fig. 9 confirms this expec-
collector implantation through the SiGe base do not contribuig&ion. The noise corner frequendy: is indeed the lowest in
significantl/ f noise. Since the up-conversion process is simil@iN' 1 and LN?2, and highest in the Si BJT. Thg./fr ratio
in the HBV and SBV devices, we expect the modulative phagethe lowest in the two low-noise HBT designs because of the
noise in the HBV device to be as low as that in the hfngBV much |Owerfc and S||ght|y higherfT’ as shown in F|g 10. For
device for current densities lower than the pgak/c. the same operating frequency, SiGe profiles optimized for high

] ) ) ) .. pB,and highf should have better phase noise performance be-

C. SiGe Profile Dependence and Profile Design Implications. ;se of the lowefc. To achieve the same RF gain, transistors

The two low-noise SiGe profiled,N1 and LN2, were op- with a higherfr have the advantage to operate at a lovier
timized to improves, fr, andNF,;,, without sacrificing SiGe which further reduceg- and phase noise.
film stability and peakfr [9], [10]. Fig. 8 shows the measured The above results suggest that th€/ 3 ratio can be used as
fr data for the SiGe control, the two low-noise HBTSs, and the figure-of-merit for SiGe profile optimization becauge/ fr
Si BJT comparison. All of the SiGe HBTs have much higfier is proportional toK 7 /3 according to (4). Thé( factor is pri-
than the Si BJTLN1 and L N2 have a slightly highef7 than marily determined by the emitter structure, and independent of
the SiGe control. The measurédf noise K factor is nearly the SiGe profile, as well as the collector doping profile, as evi-
identical for all of the SiGe designs. We thus expect a signiflenced by the experimental data. An SiGe profile producing the
icant reduction offc, as well asfc/ fr in the two low-noise lowestrg /(3 ratio leads to the begt: / fr ratio, and should have
SiGe designs according to (2) and (4). the best phase noise performance at higher frequencies.



TANG et al. MODELING AND CHARACTERIZATION OF SiGe HBT LOW-FREQUENCY NOISE FIGURES-OF-MERIT 2471

107 ¢ ey ——— 2 g
b ) ) E | e—e Ag=0.5x1.0um? i
o) 1077 & : : :E-g-g;;-gﬁmz E 100 | ¢—e Ag=0.5x2.5um? : ]
== - - E=U.IXe E _ . 2

E 108 F a—a A=05x10um? R R — B0 A—A Ae=05xI0um 7
= - m—m A=05x20um® 4 E T R A0S20umT i
< 1070 T - X 60 ¢
= g o® E &© [ SiGeControl o8 1
< 100 | L 3 - 40 - 4 .
>§n 8 o ‘. E L [ ] . . 4
A 10-21 [ SiGe Control ] L ° _
m1021§_ o * iGe Contro 1 20_ o0 . i

10_220 T | T | ] 0 il TS IR IR RN !
10° 10’ 102 0 02 04 06 08 10 12

Ig (LA) Je (mAium?)

Fig.11. Measured;, x A versus/c for SiGe control standard breakdown Fig- 12.  Measured versus/c for SiGe control standard breakdown devices
devices with four different emitter area f = 0.5 x 1.0 zm?,0.5 x 2.5 pum?, ~ With four different emitter areasz = 0.5 x 1.0 pm?, 0.5 x 2.5 pm?, 0.5 X

0.5 x 10 pm?, and0.5 x 20 pm?). 10 pm?, and0.5 x 20 um?).
. . . . 120 : . . ;
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fo K = Jg—l ( T C, ) \{voith fo;lrdifgeorent e;noitter greas%; =0.5%1.0ppm?,0.5x 2.5 um?,0.5 X
e —v |r — 'm?, and0.5 m?).
fr AT g BT PV 17 5 x 20 pm?)

= % (TFJg—l + V;Ctjg—2). (6) the case in these devices, as shown by the meaguvetsus

p~tqAg Jc data given in Fig. 13. Thelg = 0.5 x 2.5 um? device

TheK factor is now defined using;,, x f = K1%/Ag, and has has a highep than the other three geometries. The higher
dimensions ofA2~* um?. These modified equations were usedpr this geometry is consistently observed on both the Si con-
to calculate the modeling curve for SiGe control. The modifff©! wafer and the three SiGe HBT wafers, and is possibly due

cation is necessary to achieve quantitative agreement with miythe strain induced by the shallow trench isolatiéh fac-
surement for SiGe control. Equations (2) and (4), however, pi§rs andJc being the same, a highgf leads to a lowerfc
vide better insight and intuitive understanding of the biasing cUf€caus€/c is inversely proportional to current gain. On the
rent density dependence because of simple functional forms2ther hand, for a giverdc, fr is independent of geometry be-
fore high injectionfr rolloff [12]. The 3 difference among dif-

D. Geometrical Scaling and Optimal Transistor Sizing ferent geometries translates into #n/ fr difference. Under

— = |4 2
In RFIC design, the device geometry and layout are oftdfie sameJo, the Ap = 0.5 x 2.5 pm” HBT has the lowest
) . . . and fc/ fr, therefore, it is an optimum unit cell choice for
used as design variables. The total emitter length required’fs ¢ . . . .
) . . device layout. For instance, if the total effective emitter area re-
often physically realized by connecting a number of small areéa. ™~ . 9 o
. . . : . uired isAg = 0.5 x 10 um?*, a parallel combination of four
unit cells in parallel. To investigate the low-frequency noise pef: 9
. . . : Ag = 0.5 x 2.5 um* HBTs should have a better low-frequency
formance of unit cells with different emitter areas, measuré-~ . - formance than t 0.5 x 1.0 umZ HBTS in par
ments were made on the standard SiGe control wafer for th P WX P P

— = 2
oo mitr rss e = 03¢ 10U 8 e = e
0.5 x 2.5 um?; 3) Ap = 0.5 x 10 pm?; and 4) andAg = y SU% y using an op

0.5 x 20 pm?2. unit cell size.

Fig. 11 compares th&;,, x Ag product as a function of the
base currenip for the four devices. SiGe control HBTs of dif-
ferent emitter sizes show the same base current noise and emitt&¥e have presented modeling and experimental results of
area productS, x Ag) when biased at the same base currentorner frequencyyc) and corner frequency to cutoff frequency
Fig. 12 shows the noise corner frequerig¢y:) versus collector ratio (fc/fr) in a commercial SiGe HBT technology. The
current density J) for different emitter areas. To our surprisecorner frequencyfc is proportional to the collector current
the Ap = 0.5 x 2.5 um? device has the lowegt: at the same density.Jc, and inversely proportional t6. The fc/ fr ratio is
Jc. First-order theory predicts the sarfie if 3 is assumed to proportional to the product of, the forward transit timey,
be invariant among different emitter areas. This, however, is rtbe 1/ f noise factorK, and is inversely proportional t6. The

V. CONCLUSION
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HBYV devices show nearly the sanfe and f-/ fr ratio as the
high fr devices at lowet/c prior to the fr rolloff. Measure-
ments of devices featuring various SiGe profile designs shc
that bothf- and thef</ fr ratio can be significantly reduced
by careful SiGe profile optimization without sacrificing SiGe
film stability. The results also suggest that the/( ratio
can be used as &/f noise figure-of-merit for SiGe profile
and collector doping profile optimization in device desigr %
The noise corner frequency was found to be device geometry
dependent, and can be reduced by as high as 50% when the
0.5x 2.5um? HBT is used as the unit cell in RFIC design. I
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